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Abstract

In this work, the artificial neural networks (ANN) and partial least squares (PLS) were applied to data obtained by differential pulse voltam-
metry for the determination of vitamins in synthetic and pharmaceutical samples. For calibration purposes, both synthetic and commercia
samples were employed as standards. From the results it was possible to verify that ANN is the best method for modeling the data due t
the fact that interactions among electro-active components result in non-linear response on the glassy carbon electrode. The results achiev
for the determination of vitamins in pharmaceutical samples using ANN method provided a maximum value for relative error of 0.40% for
VC, 8.3% for VPP and 9.1% for VB6. The proposed methodology is simple, rapid and can be easily used to control quality laboratories as ar
alternative analysis method.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction analysis in conjunction with spectrophotometfic8] and
electrochemical techniqugg] have also been reported.
Vitamins are organic substances essential to human In the present work, two calibration models were evalu-
body function. They act mainly as coenzymes in numerous ated using data obtained by differential pulse voltammetry:
metabolic ways, with the systematic absence of vitamins in artificial neural networks (ANN) and partial least squares
the diet the cause of some diseafgs Recently, enriched  (PLS).
foods and pharmaceutics preparations have become an im- Partial least squarg$0,11]is the method normally used
portant means of acquiring vitamins for the organism. In fact for multivariate calibration, where the multivariate signal,
of the large consumption of these products necessitates conin this case current measured at different potentials of the
trol methods to assure their quality. For most of the methods voltammograms (variablg) and concentrations (variabyg
described in the literature involve prior chemical and phys- of the samples are used to establish a linear regression model.
ical separations. These methods include high-performanceFirst, the data are placed in matrix form: matixand Y
liquid chromatography with electrochemical and UV detec- which contain the independemntand dependeny, variables
tion [2—4], titration and spectrophotometric techniq{&$]. respectively. These matrices are decomposed into a sum of
On the other hand, a few studies employing multivariate data latent variables and two sets of models are obtained:
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Y =UQT +F = thpr +F ) The network output or the estimate_d _values obtained are
compared to the expected value obtaining the mean square
in which T andU are the score matrice® andQ are the  error (calibration error). The error is defined as the sum of
loading matrices ang andF are the residual matrices. The the square resulting from the difference between the estimate
superscript T indicates a transposed matrix. The product of Value and the expected value. The next step is to correct the
T and PT approximates to the independent variables (e.g. We!ghts of all layers until the calibration erroris m|_n|m|zed,
voltammograms data) and the produtandQT to the de- whlch can b_g made through of a speuﬁed algorlthm. The
pendent variables (e.g. concentrations). In the PLS method,algorithm utilized to correct the weights and biases in this
significant information contained in the voltammograms is Study was Marquardt-Levenberg algorithm. This can be rep-
concentrated in a few latent variables that are optimized to "eseénted by E¢4).
produce the best correlation with the desired property to be T 17
determined (concentration). It is possible to obtain a scores A%k = —[J" (Xik)I(Xk) + ukl] "I (i) (Vi) (4)
matrix that is common to both the concentratiof) @nd
measurements(. The concentration of new samples can be
estimated from the new scor&$ and the model loading,
which can be substituted in E(R), leading to Eq(3):

whereJ is the Jacobian matrix of the error for each weights,
u the non-negative scalak,the identity matrix, Xx) rep-
resents weights andvy) represents error. This learning
method can be seen as an intermediate procedure between the
Ynew= T*QT A3) Gauss—Newton method and the steeped descendent method.
In this algorithm whenu assumes elevated values the de-
Using cross-validation which is based on the determination scendent gradient method is obtained and wheassumes
of the minimum prediction error performs the best number small values the Gauss—Newton method predominates. The
of latent variable necessary in this procedure. Marquardt—Levenberg method is faster in convergence and
Usually PLS method assumes a linear relationship be- is more robust than the other algorithms.
tween the measured sample parameter and the intensity of After correcting the weights and biases and obtaining a
its signal. Small deviations from linearity are acceptable. In satisfactory error, the artificial neural network is completely
this case additional modeling factors are taken into accounttrained, and it is possible to evaluate the generalization prop-
in the model. However, in the presence of substantial non- erties of the neural network by adopting another group, a
linearity, PLS tends to give large prediction errors and calls validation set, which has different data from those used in
for more robust models. Intrinsically non-linear calibration the calibration. The concentrations of vitamins in this new
methods such as artificial neural networks are applicable in group can be predicted.
the latter case. In many cases the principal disadvantage of In this work, artificial neural networks and partial least
neural network is the time necessary for trained it. squares in conjunction with differential pulse voltammetry
Artificial neural network$12] is a multivariate calibration ~ (DPV) were used to substitute traditional methods for vita-
method used mainly for modeling non-linear data, although, mins determinations. These methods are especially appealing
some applications use the neural network for modeling linear for the determination of the active components in complex
data. This form of multivariate data analysis is becoming pharmaceutical samples whose other components may show
extremely important in many analytical applicatidt8]. analytical signals, which are severally overlapped with those
The artificial neural network is a system composed of from the analytes. In this study, although the determination
several simple units (artificial neurons), properly linked, insynthetic samples does notshow overlap, this can be found
producing a complex behavior. The neural network behavior in pharmaceutical sample which impossibility to use a uni-
is determined by their topologies. In this study feed-forward variate method for analysis.
was used as topology and the neural network architecture The proposed methodology is fast, simple and does not
composed of three layers: the first layer corresponds to datagenerate hazardous chemical wastes, thus making it easily
input (the input can be the current measured at different possible to use in quality control analysis.
potentials or principal components), one hidden layer with
an appropriate number of neurons and an output layer or
responses of the neural network corresponds to concentratior?. Experimental
of vitamins in pharmaceutics.
To train a neural network, the data input multiplied by 2.1. Reagent and commercial samples
weights are integrated into an artificial neuron. The output
of each layer is obtained by applying a linear, sigmoid or  Allthe chemicals were of analytical-reagent grade. Nicoti-
tangent hyperbolic transfer function to these data. Normally, namide (VPP), pyridoxine hydrochloride (VB6) and ascor-
the bias is added to transfer function for better adjustment. bic acid (VC) (all from Sigma, St Louis, MO, USA) were
For multilayer networks the output of one layer becomes the used without purification. Supporting electrolyte solution:
input to the following layer and the outputs of the neurons in Sodium dihydrogen phosphate salts (Merck) and phospho-
the last layer are considered the network outputs. ric acid (Merck) were used to prepare buffer solutions (pH
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6.0; 0.2mol -1). Stock solutions were prepared daily by Tablel , o

dissolving each sample in buffer solution, obtaining concen- HPLC results and label claim of VC, VPP and VB6 in Revifgymo brand
. 1 . ) 1 formulation (mg mL1) and Teragrah (2.5 mgmLt)

trations of 3.0 mg mE- for ascorbic acid (VC), 0.8 mg mt:

for nicotinamide (VPP) and 0.09 mg mt for pyridoxine hy- Sample Vitamin C Vitamin PP Vitamin B6
drochloride (VB6). Revitanf? 35204140  6.00£0.30 0.60+0.10
H a

The pharmaceutical preparations assayed had the foIIow—sz:igﬁ gg'g(& 1.30 2'(1)% 0-30 %‘2& 0.08
ing composition: Revitaff (Biolab-Sanus, Brazil), vitamin Teragraff@ 25104110 10208080  0.50:0.10
A-1250U, VB1-0.4mg, VB2-0.5mg, VB6-0.6mg, Teragraf® 25.20+1.00  10.16:t0.45  0.50£0.15
VB12-0.5ng, VC-35.0mg, vitamin D3-400U, folic  Teragraf 25.0 10.0 0.5
acid—35.Qug, VPP—6.0 mgp-Panthenol-3.0 mg, NEDTA, No brand formulatioh ~ 25.00+1.30  12.16:0.90 1.16£0.10

. . . No brand formulatiof 25.20+1.24 12.3G:0.90 1.20+0.17
polisorbate 80, ascorbate, magrogol, Etilmaltol, sacarin, No brand formulation 25.0 12.0 10

sodium ciclamate, sucrose, orange flavor, water, and butyl-
hydroxyanizole, as excipients per mL. TeradtaiBristol-

Meyers Squibb), vitamin A-2500U, vitamin D3-200U, _ .
VB1-1.5mg, VB2-1.5mg, VB6-0.5mg, VPP-10.0mg, by the use of a twelve bits A/D&D/A Lab made interface con-

p-Panthenol-2.5mg, VB12-2f5, VC-25.0mg and nected to an IBM/PC compatible microcomputer where the

Polisorbate, ferric ammonium citrate, sodium benzoate, voltammetric waveforms were computed and the acquired
glycerol, orange flavor, and liquid sugar, as excipients data were recorded.. In this sygtem for a Qifferentigl pulse
per 2.5mL. No brand name formulation sample, vita- voltammogramapalrof data point yersus @ is obtained
min A-1250U, VB1-0.4mg, VB2-0.5mg, VB6-1.0mg, for_ eac_h apphed pulse that means the to_tql number of data
VB12-0.5ug, VC—25.0mg, vitamin D3-400U, folic pomts is given by the potential interval QMded by the po-
acid—35.Qug, VPP—12.0 mgp-Panthenol-3.0mg, per mL tential increment that follows each potential pulse. The DPV

and the same excipients as Terataihis sample was curves for the real samples where registered fratB00 mV
furnished by a local manufacturer to 1300 mV covering all the available potential window for

For analysis, stock solutions of each sample were prepareath‘fi‘tt ?OIT(;%”Z l:S'ng_7th for tEe potential stFep, Wthh'c? dret-
in phosphate buffer solution, obtaining the same concentra-zu ls(ln ata %om S pgrl\/_o amnlwogram. r(;m at data
tion utilized for synthetic samples. anks appropriated potential intervals were used to compose

Deionised water obtained from a Millipore Milli-Q appa- the matrix for the ANN and PLS calculations. A conven-

ratus was used throughout. tional three-electrode system was employed consisting of a
glassy carbon electrode as working electrode, an Ag/AgCl

reference electrode and a Pt wire as counter-electrode.

2.2. Chromatographic analysis The electrode was polished with alumina and washed with
water purified in a Milli-Q system and the sample solu-

The pharmaceutical preparations were first analyzed by tions were degassed by a nitrogen flow for 15min before
HPLC technique, which was used as reference. measurements.

The HPLC system was composed of a Shimadzu (Tokyo,  Differential pulse voltammetry was carried out for the
Japan) LC-10 AD pumps, a SPD-M10A UV-vis detector mixture of synthetic vitamins and for the pharmaceutical
and an universal injector. The software to process the chro-samples in phosphate buffer solutions (pH 6.0; 0.2 mdjL
matographic data was Class-LC, 1.64 version. Ap¢Hro- The instrumental parameters of DPV were scan speed:
matographic column (Shimadzu-Shim—PaCk) was utilized. 14 mV s—l, pu|3e duration: 100 ms, pu|se frequency: 05s
The separation of the vitamins was carried out by an elu- and pulse amplitude: 50 mV.
tion with a 1:1 v/v methanol-potassium dihydrogen phos-
phate (0.05M) solution which pH was adjusted to 2.8 by 5 4 goftware
adding proper amounts of a phosphoric acid 0.01 M solution.

All measurements were carried out in a thermostated room The data were handled using MATLAB software, 6.0 ver-

o inl
(20+1°C) ataflow-rate of L mL min™. The UV detectorat  gjon (The Mathworks, Natik, USA). PLS toolbox, 2.0 version
254 nm revealed the peaks. Quantitative data were Obta'”ed(Eigenvector Technologies, Manson, USA).

using external standardization, and analytical curves were
constructed by plotting peak areas versus concentration. The2 5. Calibration and validation set
results using the HPLC technique are showifable 1 e

a Averaget S.D. for three determinations.

For calibration purposes several models were proposed.
2.3. Electrochemical measurements In the first, synthetic samples of pyridoxine hydrochloride
(VB6), nicotinamide (VPP) and ascorbic acid (VC) in a phos-
Differential pulse voltammetric experiments were per- phate buffer (pH 6.0, 0.2 molt!) were utilized as standards.
formed with a polarographic analyzer from (EG&G Princeton The sample set was prepared in the concentration range of
Applied Research (PAR) model 174, which was automated 0.07-0.8 mg mE? for nicotinamide, 0.05-3.0 mg mi for
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ascorbic acid and 0.008-0.08 mg miLfor pyridoxine hy-
drochloride, resulting in a total of 151 samples.

o . . I - Teragran

For validation of this model, three synthetic samples with — Revifam

different concentration of vitamin C, vitamin B6 and vitamin 80+ f |N0 brand
ormulation

PP were utilized.

Another model was constructed using pharmaceutical
sample as standard. A total of 166 solutions were prepared
from dilutions of pharmaceutical samples in phosphate buffer
(pH 6.0, 0.2 mol 1), with the same concentration range uti-
lized for synthetic samples. For validation of this model, three

\___m e

Current/uA

commercial samples of the same type were used.
The model obtained using DPV and synthetic samples was

able to predict the concentration of other synthetic samples 0 . — ; . . .
but this calibration curve was not able to predict the concen- -1500 750 0 750 1500
trations of commercial samples, due to interference by the Potential vs Ag/AgClimV
excipients.

. Fig. 2. Differential pulse voltammogram pf pharmaceutics samples: (
On the order hand, the model constructed using commer- g i e (__) no brand formulation and (.); Teragraff, in 0.2 mol L1

cial samples shows good results when applied to predict thephosphate buffer of pH 6.0.
concentrations of the same types of sample. Modeling only
the excipients and other components not results in good pre-the glassy carbon electrode in a phosphate buffer (pH 6.0,
dictions, in this case, due to the complexity of the samples 0.2 mol L™%). From these figures it is possible to observe that
utilized. nicotinamide shows a reduction peak at a potential nearly
—1400 mV and a small oxidation peak-a815 mV when the
concentration of this compound is high. This can be better
3. Results and discussion observed irFig. 2where the small anodic peak corresponds
to oxidation of a nicotinamide reduction product. Ascorbic
3.1. VC, VPP and VB6 differential pulse voltammograms ~ acid shows an oxidation peak at a potential near 400 mV and
the last compound, pyridoxine, an oxidation peak at a po-
The differential pulse voltammograms for synthetic and tential near to 850 mV. Frorkig. 2it is possible to observe
pharmaceutical samples are showrFigs. 1 and 2respec-  that the pharmaceutical preparation Teraframesents an
tively. These figures show voltammograms of mixtures hav- overlap of the ascorbic and pyridoxine peaks, not observed
ing different concentrations of the compounds pyridoxine in the other compounds. This is probably due to the fact that
(VB6), ascorbic acid (VC) and nicotinamide (VPP) for syn- in commercial samples the excipients can cause interference

thetic samples and for the three pharmaceutics samples usind this determination. For this reason, a calibration curve em-
ploying synthetic samples as standards is not useful for cal-

120 ibration purposes of commercial samples because potential
matrix effect do not consider these facts. The potential matrix
effect was verified in this study. However this problem can
be overcome by using multivariate methods and samples of
the same type in the calibration model, as observed in the
obtained results.

80

/ 3.2. Calibration and validation of PLS and neural
network for synthetic samples

Current/uA

40 [ /
f Yo Multivariate calibration methods require a suitable num-
\ / ber of samples present in calibration set. The ANN method
\ require a high number of samples in order to trained it to
s st S — the contrary this method will not provide a good prediction.
-1400 -700 0 700 1400 Although the PLS not require an equal number of samples,
Potencial vs Ag/AgCl/mV the same group of samples were utilized for comparison pur-
poses. A PLS model constructed with a smaller group of
Fig. 1. Differential pulsg voltammetric signal provided by a mixture of samples did not show different results.
VC, VB6 and VPP in different concentrations: () 1.53mgml-1 VC, . . .
0.51mgmi=t VPP and 0.05mgmt! VB6: (...) 1.49mgmL-t VC, The partial least squares model using synthetl_c samples
0.49 mg mL1 VPP and 0.04 mg mt! VB6in 0.2 mol L~ phosphate buffer was constructed with the data obtained from differential
of pH 6.0. pulse voltammetry (variablg) and values of concentrations
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Table 2
Results for the validation set modeled with PLS for VC, VPP and VB6 in synthetic samples (g mL
Sample Real value PLS Error (%)

VC VPP VB6 VvC VPP VB6 VvC VPP VB6
1 1.00 0.20 0.030 0.98 0.25 0.038 -20 250 267
2 1.10 0.30 0.030 1.05 0.28 0.035 —-4.8 —6.8 167
3 0.70 0.20 0.040 0.68 0.17 0.029 -29 —150 -275
RMSEP 34 173 241

(variable y). These data were disposed in matrix form: tecture used in the neural network .The model was specific
Matrix X and matrixY, corresponding to data from variables for each vitamin.
x andy, respectively. The data pre-treatment used in this  To train the neural network, a tan-sigmoidal function was
process was mean centering that is a pre-treatment forutilized in the hidden layer as a transfer function. For the out-
columns. Mean centered data is obtained by subtracting theput layer a linear function was utilized. The neural network
average value of the column, for each point in this column. was trained by the Marquardt—Levenberg algorithm, using a
This pre-treatment consists of a translation of the coordinate maximum number of iterations equal to three hundred and the
axis to the coordinate center. The number of latent variableserror value employed as criterion for stopping was 102,
to be used in this model was chosen by full cross-validation The results, the relative error and RMSEP values are pre-
where all calibration samples were validated one by one. sented inTable 3
From cross-validation five latent variables were necessary
to construct the PLS model for these vitamins. 3.3. Calibration and validation of PLS and neural

After these analyses, the PLS calibration model con- network for pharmaceutical samples
structed was utilized to determine vitamins in other synthetic
samples. The relative performance of the different models  The PLS model using pharmaceutical samples was con-
for each vitamin was evaluated in terms of relative error and structed with the data obtained from differential pulse voltam-
root mean square of error prediction (RMSEP), representedmetry (variablex) and values of concentrations (varialyle

by Eq.(6). based on HPLC analysis. These data were disposed in ma-
trix X andY form corresponding to variablesandy, re-

3 (Vreal — yprev)2 spectively. The same data pre-treatment (mean centering)

RMSEP=/=———— (6) was used. From cross-validation six latent variables were

necessary to construct the PLS model for the three vita-
whereyrea are the real values fgt yprevare the values found  mins using DPV. The PLS model constructed was utilized
by the model constructed amdhe number of samples used. to determine vitamin concentrations in other commercial
The results obtained from PLS and the criteria of validation samples of the same type that was used in the calibration
method based on relative error and RMSEP are shown inmodel.
Table 2 The results obtained from PLS by DPV analysis, the RM-

The other multivariate model, artificial neural networks, SEP and relative error value are showmable 4

was also utilized for modeling data from synthetic samples.  The other multivariate model, artificial neural network was
After pre-treatment using mean and the standard deviation,applied for modeling data from DPV using these samples. For
these data were reduced by applying principal componentthis analysis, a pre-treatment using mean and the standard
analysis. From this, it is possible to verify that five principal deviation was applied and the data were reduced by applying
components were capable of explaining 99.99% of data vari- principal component analysis. Six principal components were
ance. These five components were the data inputs in the firstcapable of explaining 99.99% of data variance and they were
layer. A hidden layer with six neurons and an output layer employed as data inputs in the first layer which is followed
with one neuron followed the first layer. This was the archi- by a hidden layer with six neurons and an output layer with

Table 3
Results for the validation set modeled with ANN for VC, VPP and VB6 in synthetic samples (m§mL
Sample Real value ANN Error (%)

vC VPP VB6 VvC VPP VB6 vC VPP VB6
1 1.00 0.20 0.030 1.00 0.21 0.028 0 .05 —6.7
2 1.10 0.30 0.030 1.09 0.30 0.029 -0.9 0 -33
3 0.70 0.20 0.040 0.70 0.19 0.039 0 -5.0 -25

RMSEP 0.5 41 48
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Table 4
Results for the validation set modeled with PLS for VC, VPP and VB6 in pharmaceutical samples
Sample HPLC results PLS Error (%)

VC VPP VB6 VvC VPP VB6 VvC VPP VB6
Revitan® 35.20 600 0.60 39.10 ®0 0.80 111 333 333
Teragraﬁ) 25.10 1020 0.50 27.10 1a0 0.40 79 -1.0 —-200
No brand 25.00 120 1.10 26.00 150 1.20 40 41 9.1
RMSEP 8.2 194 230

Revitan®, no brand sample (mg mi) and Teragrafi (2.5 mg mL—1).

Table 5
Results for the validation set modeled with ANN for VC, VPP and VB6 in pharmaceutical samples
Sample HPLC results ANN Error (%)

VC VPP VB6 VC VPP VB6 VC VPP VB6
Revitan® 35.20 600 0.60 35.30 B0 0.60 0.30 8 0
Teragraf® 25.10 1020 0.50 25.20 1a0 0.50 0.40 -1.0 0
No brand 25.00 120 1.10 25.00 120 1.20 0 0 a
RMSEP 0.28 48 5.3

Revitan®, no brand sample (mg mi}) and Teragrafi (2.5 mg mL—1).
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