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Abstract

In this work, the artificial neural networks (ANN) and partial least squares (PLS) were applied to data obtained by differential pulse voltam-
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etry for the determination of vitamins in synthetic and pharmaceutical samples. For calibration purposes, both synthetic and c
amples were employed as standards. From the results it was possible to verify that ANN is the best method for modeling the
he fact that interactions among electro-active components result in non-linear response on the glassy carbon electrode. The res
or the determination of vitamins in pharmaceutical samples using ANN method provided a maximum value for relative error of 0
C, 8.3% for VPP and 9.1% for VB6. The proposed methodology is simple, rapid and can be easily used to control quality laborat
lternative analysis method.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Vitamins are organic substances essential to human
ody function. They act mainly as coenzymes in numerous
etabolic ways, with the systematic absence of vitamins in

he diet the cause of some diseases[1]. Recently, enriched
oods and pharmaceutics preparations have become an im-
ortant means of acquiring vitamins for the organism. In fact
f the large consumption of these products necessitates con-

rol methods to assure their quality. For most of the methods
escribed in the literature involve prior chemical and phys-

cal separations. These methods include high-performance
iquid chromatography with electrochemical and UV detec-
ion [2–4], titration and spectrophotometric techniques[5,6].
n the other hand, a few studies employing multivariate data
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analysis in conjunction with spectrophotometric[7,8] and
electrochemical techniques[9] have also been reported.

In the present work, two calibration models were ev
ated using data obtained by differential pulse voltamm
artificial neural networks (ANN) and partial least squa
(PLS).

Partial least squares[10,11] is the method normally use
for multivariate calibration, where the multivariate sign
in this case current measured at different potentials o
voltammograms (variablex) and concentrations (variabley)
of the samples are used to establish a linear regression m
First, the data are placed in matrix form: matrixX andY
which contain the independent,x, and dependent,y, variables
respectively. These matrices are decomposed into a s
latent variables and two sets of models are obtained:

X = TPT + E =
∑

tfpT
f + E (1)

731-7085/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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Y = UQT + F =
∑

tfpT
f + F (2)

in which T andU are the score matrices;P andQ are the
loading matrices andE andF are the residual matrices. The
superscript T indicates a transposed matrix. The product of
T andPT approximates to the independent variables (e.g.
voltammograms data) and the productU andQT to the de-
pendent variables (e.g. concentrations). In the PLS method,
significant information contained in the voltammograms is
concentrated in a few latent variables that are optimized to
produce the best correlation with the desired property to be
determined (concentration). It is possible to obtain a scores
matrix that is common to both the concentration (Y) and
measurements (X). The concentration of new samples can be
estimated from the new scoresT* and the model loadingQ,
which can be substituted in Eq.(2), leading to Eq.(3):

Ynew = T∗QT (3)

Using cross-validation which is based on the determination
of the minimum prediction error performs the best number
of latent variable necessary in this procedure.

Usually PLS method assumes a linear relationship be-
tween the measured sample parameter and the intensity of
its signal. Small deviations from linearity are acceptable. In
this case additional modeling factors are taken into account
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The network output or the estimated values obtained are
compared to the expected value obtaining the mean square
error (calibration error). The error is defined as the sum of
the square resulting from the difference between the estimate
value and the expected value. The next step is to correct the
weights of all layers until the calibration error is minimized,
which can be made through of a specified algorithm. The
algorithm utilized to correct the weights and biases in this
study was Marquardt–Levenberg algorithm. This can be rep-
resented by Eq.(4).

�xk = −[JT(xk)J(xk) + µkI ]
−1
JT(xk)(vk) (4)

whereJ is the Jacobian matrix of the error for each weights,
µ the non-negative scalar,I the identity matrix, (xk) rep-
resents weights and (vk) represents error. This learning
method can be seen as an intermediate procedure between the
Gauss–Newton method and the steeped descendent method.
In this algorithm whenµ assumes elevated values the de-
scendent gradient method is obtained and whenµ assumes
small values the Gauss–Newton method predominates. The
Marquardt–Levenberg method is faster in convergence and
is more robust than the other algorithms.

After correcting the weights and biases and obtaining a
satisfactory error, the artificial neural network is completely
trained, and it is possible to evaluate the generalization prop-
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n the model. However, in the presence of substantial
inearity, PLS tends to give large prediction errors and c
or more robust models. Intrinsically non-linear calibrat
ethods such as artificial neural networks are applicab

he latter case. In many cases the principal disadvanta
eural network is the time necessary for trained it.

Artificial neural networks[12] is a multivariate calibratio
ethod used mainly for modeling non-linear data, altho

ome applications use the neural network for modeling li
ata. This form of multivariate data analysis is becom
xtremely important in many analytical applications[13].

The artificial neural network is a system compose
everal simple units (artificial neurons), properly link
roducing a complex behavior. The neural network beha

s determined by their topologies. In this study feed-forw
as used as topology and the neural network archite
omposed of three layers: the first layer corresponds to
nput (the input can be the current measured at diffe
otentials or principal components), one hidden layer
n appropriate number of neurons and an output lay
esponses of the neural network corresponds to concent
f vitamins in pharmaceutics.

To train a neural network, the data input multiplied
eights are integrated into an artificial neuron. The ou
f each layer is obtained by applying a linear, sigmoid

angent hyperbolic transfer function to these data. Norm
he bias is added to transfer function for better adjustm
or multilayer networks the output of one layer becomes

nput to the following layer and the outputs of the neuron
he last layer are considered the network outputs.
rties of the neural network by adopting another grou
alidation set, which has different data from those use
he calibration. The concentrations of vitamins in this n
roup can be predicted.

In this work, artificial neural networks and partial le
quares in conjunction with differential pulse voltamme
DPV) were used to substitute traditional methods for v
ins determinations. These methods are especially app

or the determination of the active components in com
harmaceutical samples whose other components may
nalytical signals, which are severally overlapped with th

rom the analytes. In this study, although the determina
n synthetic samples does not show overlap, this can be f
n pharmaceutical sample which impossibility to use a
ariate method for analysis.

The proposed methodology is fast, simple and doe
enerate hazardous chemical wastes, thus making it
ossible to use in quality control analysis.

. Experimental

.1. Reagent and commercial samples

All the chemicals were of analytical-reagent grade. Nic
amide (VPP), pyridoxine hydrochloride (VB6) and asc
ic acid (VC) (all from Sigma, St Louis, MO, USA) we
sed without purification. Supporting electrolyte solut
odium dihydrogen phosphate salts (Merck) and phos

ic acid (Merck) were used to prepare buffer solutions
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6.0; 0.2 mol L−1). Stock solutions were prepared daily by
dissolving each sample in buffer solution, obtaining concen-
trations of 3.0 mg mL−1 for ascorbic acid (VC), 0.8 mg mL−1

for nicotinamide (VPP) and 0.09 mg mL−1 for pyridoxine hy-
drochloride (VB6).

The pharmaceutical preparations assayed had the follow-
ing composition: Revitam® (Biolab-Sanus, Brazil), vitamin
A–1250 U, VB1–0.4 mg, VB2–0.5 mg, VB6–0.6 mg,
VB12–0.5�g, VC–35.0 mg, vitamin D3–400 U, folic
acid–35.0�g, VPP–6.0 mg,d-Panthenol–3.0 mg, Na2EDTA,
polisorbate 80, ascorbate, magrogol, Etilmaltol, sacarin,
sodium ciclamate, sucrose, orange flavor, water, and butyl-
hydroxyanizole, as excipients per mL. Teragran® (Bristol-
Meyers Squibb), vitamin A–2500 U, vitamin D3–200 U,
VB1–1.5 mg, VB2–1.5 mg, VB6–0.5 mg, VPP–10.0 mg,
d-Panthenol–2.5 mg, VB12–2.5�g, VC–25.0 mg and
Polisorbate, ferric ammonium citrate, sodium benzoate,
glycerol, orange flavor, and liquid sugar, as excipients
per 2.5 mL. No brand name formulation sample, vita-
min A–1250 U, VB1–0.4 mg, VB2–0.5 mg, VB6–1.0 mg,
VB12–0.5�g, VC–25.0 mg, vitamin D3–400 U, folic
acid–35.0�g, VPP–12.0 mg,d-Panthenol–3.0 mg, per mL
and the same excipients as Teragran®. This sample was
furnished by a local manufacturer.

For analysis, stock solutions of each sample were prepared
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Table 1
HPLC results and label claim of VC, VPP and VB6 in Revitam®, no brand
formulation (mg mL−1) and Teragran® (2.5 mg mL−1)

Sample Vitamin C Vitamin PP Vitamin B6

Revitam®a 35.20± 1.40 6.00± 0.30 0.60± 0.10
Revitam®a 35.40± 1.30 6.10± 0.30 0.70± 0.08
Revitam® 35.0 6.0 0.6
Teragran®a 25.10± 1.10 10.20± 0.80 0.50± 0.10
Teragran®a 25.20± 1.00 10.10± 0.45 0.50± 0.15
Teragran® 25.0 10.0 0.5
No brand formulationa 25.00± 1.30 12.10± 0.90 1.10± 0.10
No brand formulationa 25.20± 1.24 12.30± 0.90 1.20± 0.17
No brand formulation 25.0 12.0 1.0

a Average± S.D. for three determinations.

by the use of a twelve bits A/D&D/A Lab made interface con-
nected to an IBM/PC compatible microcomputer where the
voltammetric waveforms were computed and the acquired
data were recorded. In this system for a differential pulse
voltammogram a pair of data points (E versus di) is obtained
for each applied pulse that means the total number of data
points is given by the potential interval divided by the po-
tential increment that follows each potential pulse. The DPV
curves for the real samples where registered from−1500 mV
to 1300 mV covering all the available potential window for
that solutions using 7 mV for the potential step, which re-
sults in 400 data points per voltammogram. From that data
banks appropriated potential intervals were used to compose
the matrix for the ANN and PLS calculations. A conven-
tional three-electrode system was employed consisting of a
glassy carbon electrode as working electrode, an Ag/AgCl(s)
reference electrode and a Pt wire as counter-electrode.
The electrode was polished with alumina and washed with
water purified in a Milli-Q system and the sample solu-
tions were degassed by a nitrogen flow for 15 min before
measurements.

Differential pulse voltammetry was carried out for the
mixture of synthetic vitamins and for the pharmaceutical
samples in phosphate buffer solutions (pH 6.0; 0.2 mol L−1).
The instrumental parameters of DPV were scan speed:
14 mV s−1, pulse duration: 100 ms, pulse frequency: 0.5 s−1
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n phosphate buffer solution, obtaining the same conce
ion utilized for synthetic samples.

Deionised water obtained from a Millipore Milli-Q app
atus was used throughout.

.2. Chromatographic analysis

The pharmaceutical preparations were first analyze
PLC technique, which was used as reference.
The HPLC system was composed of a Shimadzu (To

apan) LC-10 AD pumps, a SPD-M10A UV–vis detec
nd an universal injector. The software to process the
atographic data was Class-LC, 1.64 version. A NH2 chro-
atographic column (Shimadzu-Shim-Pack) was utili
he separation of the vitamins was carried out by an

ion with a 1:1 v/v methanol–potassium dihydrogen ph
hate (0.05 M) solution which pH was adjusted to 2.8
dding proper amounts of a phosphoric acid 0.01 M solu
ll measurements were carried out in a thermostated

20± 1◦C) at a flow-rate of 1 mL min−1. The UV detector a
54 nm revealed the peaks. Quantitative data were obt
sing external standardization, and analytical curves
onstructed by plotting peak areas versus concentration
esults using the HPLC technique are shown inTable 1.

.3. Electrochemical measurements

Differential pulse voltammetric experiments were p
ormed with a polarographic analyzer from (EG&G Prince
pplied Research (PAR) model 174, which was autom
nd pulse amplitude: 50 mV.

.4. Software

The data were handled using MATLAB software, 6.0 v
ion (The Mathworks, Natik, USA). PLS toolbox, 2.0 vers
Eigenvector Technologies, Manson, USA).

.5. Calibration and validation set

For calibration purposes several models were propo
n the first, synthetic samples of pyridoxine hydrochlo
VB6), nicotinamide (VPP) and ascorbic acid (VC) in a ph
hate buffer (pH 6.0, 0.2 mol L−1) were utilized as standard
he sample set was prepared in the concentration ran
.07–0.8 mg mL−1 for nicotinamide, 0.05–3.0 mg mL−1 for
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ascorbic acid and 0.008–0.08 mg mL−1 for pyridoxine hy-
drochloride, resulting in a total of 151 samples.

For validation of this model, three synthetic samples with
different concentration of vitamin C, vitamin B6 and vitamin
PP were utilized.

Another model was constructed using pharmaceutical
sample as standard. A total of 166 solutions were prepared
from dilutions of pharmaceutical samples in phosphate buffer
(pH 6.0, 0.2 mol L−1), with the same concentration range uti-
lized for synthetic samples. For validation of this model, three
commercial samples of the same type were used.

The model obtained using DPV and synthetic samples was
able to predict the concentration of other synthetic samples
but this calibration curve was not able to predict the concen-
trations of commercial samples, due to interference by the
excipients.

On the order hand, the model constructed using commer-
cial samples shows good results when applied to predict the
concentrations of the same types of sample. Modeling only
the excipients and other components not results in good pre-
dictions, in this case, due to the complexity of the samples
utilized.

3. Results and discussion
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Fig. 2. Differential pulse voltammogram pf pharmaceutics samples: ()
Revitam® ( ) no brand formulation and (. . .); Teragran®, in 0.2 mol L−1

phosphate buffer of pH 6.0.

the glassy carbon electrode in a phosphate buffer (pH 6.0,
0.2 mol L−1). From these figures it is possible to observe that
nicotinamide shows a reduction peak at a potential nearly
−1400 mV and a small oxidation peak at−315 mV when the
concentration of this compound is high. This can be better
observed inFig. 2where the small anodic peak corresponds
to oxidation of a nicotinamide reduction product. Ascorbic
acid shows an oxidation peak at a potential near 400 mV and
the last compound, pyridoxine, an oxidation peak at a po-
tential near to 850 mV. FromFig. 2 it is possible to observe
that the pharmaceutical preparation Teragran® presents an
overlap of the ascorbic and pyridoxine peaks, not observed
in the other compounds. This is probably due to the fact that
in commercial samples the excipients can cause interference
in this determination. For this reason, a calibration curve em-
ploying synthetic samples as standards is not useful for cal-
ibration purposes of commercial samples because potential
matrix effect do not consider these facts. The potential matrix
effect was verified in this study. However this problem can
be overcome by using multivariate methods and samples of
the same type in the calibration model, as observed in the
obtained results.

3.2. Calibration and validation of PLS and neural
network for synthetic samples
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.1. VC, VPP and VB6 differential pulse voltammogram

The differential pulse voltammograms for synthetic
harmaceutical samples are shown inFigs. 1 and 2, respec

ively. These figures show voltammograms of mixtures
ng different concentrations of the compounds pyridox
VB6), ascorbic acid (VC) and nicotinamide (VPP) for s
hetic samples and for the three pharmaceutics samples

ig. 1. Differential pulse voltammetric signal provided by a mixture
C, VB6 and VPP in different concentrations: ( ) 1.53 mg mL−1 VC,
.51 mg mL−1 VPP and 0.05 mg mL−1 VB6; (. . .) 1.49 mg mL−1 VC,
.49 mg mL−1 VPP and 0.04 mg mL−1 VB6 in 0.2 mol L−1 phosphate buffe
f pH 6.0.
Multivariate calibration methods require a suitable n
er of samples present in calibration set. The ANN me
equire a high number of samples in order to trained
he contrary this method will not provide a good predict
lthough the PLS not require an equal number of sam

he same group of samples were utilized for comparison
oses. A PLS model constructed with a smaller grou
amples did not show different results.

The partial least squares model using synthetic sam
as constructed with the data obtained from differen
ulse voltammetry (variablex) and values of concentratio
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Table 2
Results for the validation set modeled with PLS for VC, VPP and VB6 in synthetic samples (mg mL−1)

Sample Real value PLS Error (%)

VC VPP VB6 VC VPP VB6 VC VPP VB6

1 1.00 0.20 0.030 0.98 0.25 0.038 −2.0 25.0 26.7
2 1.10 0.30 0.030 1.05 0.28 0.035 −4.8 −6.8 16.7
3 0.70 0.20 0.040 0.68 0.17 0.029 −2.9 −15.0 −27.5

RMSEP 3.4 17.3 24.1

(variable y). These data were disposed in matrix form:
Matrix X and matrixY, corresponding to data from variables
x and y, respectively. The data pre-treatment used in this
process was mean centering that is a pre-treatment for
columns. Mean centered data is obtained by subtracting the
average value of the column, for each point in this column.
This pre-treatment consists of a translation of the coordinate
axis to the coordinate center. The number of latent variables
to be used in this model was chosen by full cross-validation
where all calibration samples were validated one by one.
From cross-validation five latent variables were necessary
to construct the PLS model for these vitamins.

After these analyses, the PLS calibration model con-
structed was utilized to determine vitamins in other synthetic
samples. The relative performance of the different models
for each vitamin was evaluated in terms of relative error and
root mean square of error prediction (RMSEP), represented
by Eq.(6).

RMSEP=
√∑

(yreal − yprev)2

n
(6)

whereyreal are the real values fory, yprev are the values found
by the model constructed andn the number of samples used.
The results obtained from PLS and the criteria of validation
method based on relative error and RMSEP are shown in
T

ks,
w les.
A tion,
t nent
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c vari-
a e first
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tecture used in the neural network .The model was specific
for each vitamin.

To train the neural network, a tan-sigmoidal function was
utilized in the hidden layer as a transfer function. For the out-
put layer a linear function was utilized. The neural network
was trained by the Marquardt–Levenberg algorithm, using a
maximum number of iterations equal to three hundred and the
error value employed as criterion for stopping was 1× 10−2.
The results, the relative error and RMSEP values are pre-
sented inTable 3.

3.3. Calibration and validation of PLS and neural
network for pharmaceutical samples

The PLS model using pharmaceutical samples was con-
structed with the data obtained from differential pulse voltam-
metry (variablex) and values of concentrations (variabley)
based on HPLC analysis. These data were disposed in ma-
trix X andY form corresponding to variablesx andy, re-
spectively. The same data pre-treatment (mean centering)
was used. From cross-validation six latent variables were
necessary to construct the PLS model for the three vita-
mins using DPV. The PLS model constructed was utilized
to determine vitamin concentrations in other commercial
samples of the same type that was used in the calibration
model.
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The other multivariate model, artificial neural networ

as also utilized for modeling data from synthetic samp
fter pre-treatment using mean and the standard devia

hese data were reduced by applying principal compo
nalysis. From this, it is possible to verify that five princi
omponents were capable of explaining 99.99% of data
nce. These five components were the data inputs in th

ayer. A hidden layer with six neurons and an output la
ith one neuron followed the first layer. This was the ar

able 3
esults for the validation set modeled with ANN for VC, VPP and VB6

ample Real value AN

VC VPP VB6 VC

1.00 0.20 0.030 1.0
1.10 0.30 0.030 1.0
0.70 0.20 0.040 0.7

MSEP
The results obtained from PLS by DPV analysis, the R
EP and relative error value are shown inTable 4.
The other multivariate model, artificial neural network w

pplied for modeling data from DPV using these samples
his analysis, a pre-treatment using mean and the sta
eviation was applied and the data were reduced by app
rincipal component analysis. Six principal components w
apable of explaining 99.99% of data variance and they
mployed as data inputs in the first layer which is follow
y a hidden layer with six neurons and an output layer

thetic samples (mg mL−1)

Error (%)

VPP VB6 VC VPP VB6

0.21 0.028 0 5.0 −6.7
0.30 0.029 −0.9 0 −3.3
0.19 0.039 0 −5.0 −2.5

0.5 4.1 4.8
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Table 4
Results for the validation set modeled with PLS for VC, VPP and VB6 in pharmaceutical samples

Sample HPLC results PLS Error (%)

VC VPP VB6 VC VPP VB6 VC VPP VB6

Revitam® 35.20 6.00 0.60 39.10 8.00 0.80 11.1 33.3 33.3
Teragran® 25.10 10.20 0.50 27.10 10.10 0.40 7.9 −1.0 −20.0
No brand 25.00 12.10 1.10 26.00 12.60 1.20 4.0 4.1 9.1

RMSEP 8.2 19.4 23.0

Revitam®, no brand sample (mg mL−1) and Teragran® (2.5 mg mL−1).

Table 5
Results for the validation set modeled with ANN for VC, VPP and VB6 in pharmaceutical samples

Sample HPLC results ANN Error (%)

VC VPP VB6 VC VPP VB6 VC VPP VB6

Revitam® 35.20 6.00 0.60 35.30 6.50 0.60 0.30 8.3 0
Teragran® 25.10 10.20 0.50 25.20 10.10 0.50 0.40 −1.0 0
No brand 25.00 12.10 1.10 25.00 12.10 1.20 0 0 9.1

RMSEP 0.28 4.8 5.3

Revitam®, no brand sample (mg mL−1) and Teragran® (2.5 mg mL−1).

one neuron. This is the architecture used in neural network.
The model was specific for each vitamin. To train the neural
network, a tan-sigmoidal function was utilized in the hidden
layer as a transfer function and for the output layer a linear
function was utilized. The neural network was trained by the
Marquardt–Levenberg algorithm. This neural network was
trained with a maximum number of iterations equal to 300
and the error value employed as a stopping criterion was also
1× 10−2.

The results obtained for ascorbic acid, nicotinamide and
pyridoxine analyze, are shown inTable 5.

4. Conclusions

This works demonstrates that differential pulse voltam-
metry in conjunction with chemometric techniques is a pow-
erful analytical tool to determine vitamins in synthetic and
also in pharmaceuticals samples. The method using neural
network shows better results in comparison with PLS data
possible due to the fact that interactions among electroactive
components give a non-linear response on the glassy carbon
electrode. The method is fast, simple and does not generate
hazardous chemical wastes, thus making it easily possible for
use in quality control laboratories.
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